toán con b ng cách vi t nh ng ph
ng th c đ n gi n.
ằ
ế
ữ
ươ
ứ ơ
ả
Bài t p 4
ậ
K t qu c a ch
ng trình sau đây là gì?
ế
ả ủ
ươ
public class
Narf {
public static void
zoop(String fred,
int
bob) {
System.out.println(fred);
if
(bob == 5) {
ping(
"not "
);
}
else
{
System.out.println(
"!"
);
}
}
public static void
main(String[] args) {
int
bizz = 5;
int
buzz = 2;
zoop(
"just for"
, bizz);
clink(2*buzz);
}
public static void
clink(
int
fork) {
System.out.print(
"It's "
);
zoop(
"breakfast "
, fork) ;
}
public static void
ping(String strangStrung) {
System.out.println(
"any "
+ strangStrung +
"more "
);
}
}
Bài t p 5
ậ
Đ nh lý cu i cùng c a Fermat phát bi u r ng không có các s nguyên
ị
ố
ủ
ể ằ
ố
a, b, và c nào tho mãn
ả
a
n
+ b
n
= c
n
tr tr
ng h p
ừ ườ
ợ n = 2.Vi t m t ph ng th c có tên là
ế
ộ
ươ
ứ
check_fermat
nh n vào b n tham s —
ậ
ố
ố
a
,
b
,
c
và
n
—r i ki m tra xem có tho mãn đ nh lý Fermat không. N u
ồ
ể
ả
ị
ế n l n h n 2 và hoá ra
ớ
ơ
a
n
+ b
n
= c
n
, thì
ch
ng trình s in ra “Tr i, Fermat đã l m!” Còn n u không thì ch
ng trình s in ra, “Không, v n
ươ
ẽ
ờ
ầ
ế
ươ
ẽ
ẫ
không đúng”.
B n c n ph i gi s r ng có m t ph
ng th c tên là
ạ ầ
ả
ả ử ằ
ộ
ươ
ứ
raiseToPow ; ph
ng th c này nh n đ i s là hai s
ươ
ứ
ậ
ố ố
ố
nguyên r i nâng đ i s th nh t lên lũy th a s th hai. Ch ng h n:
ồ
ố ố ứ
ấ
ừ ố ứ
ẳ
ạ
int
x = raiseToPow(2, 3);
s gán giá tr
ẽ
ị 8 cho x, b i 2
ở
3
= 8.